
 

 
 

Connected Health Cities  
– End of Project Report 
  

Workforce Development:  
 

A spatially discrete approximation to log-

Gaussian Cox processes for modelling 

aggregated disease count data 

 

 

 

 

 

 

  



 

  
 30th March 2020 

 Olatunji Johnson, Peter Diggle, Emanuele Giorgi 

  
 

Contents: 
 


 Abstract  

 Introduction  

 Methods  

 Results  

 Conclusion/Discussion  

 Author/Main Contact  

 

  



 

  
 30th March 2020 

 Olatunji Johnson, Peter Diggle, Emanuele Giorgi 

  
 

Abstract: 
In this project, we develop a computationally efficient discrete approximation to log-Gaussian 
Cox process (LGCP) models for the analysis of spatially aggregated disease count data.  

Our approach overcomes an inherent limitation of spatial models based on Markov structures, 
namely, that each such model is tied to a specific partition of the study area, and allows for 
spatially continuous prediction.  

We compare the predictive performance of our modelling approach with LGCP through a 
simulation study and an application to primary biliary cirrhosis incidence data in Newcastle 
upon Tyne, UK.  

Our results suggest that, when disease risk is assumed to be a spatially continuous process, 
the proposed approximation to LGCP provides reliable estimates of disease risk both on 
spatially continuous and aggregated scales.  

The proposed methodology is implemented in the open-source R package SDALGCP. 

Keywords: disease mapping, geostatistics, log-Gaussian Cox process, Monte Carlo maximum 

likelihood 
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Introduction: 
In this paper, our concern is to make inference on a spatially continuous disease risk surface 

using aggregated counts of reported disease cases, say, 𝑦𝑖, over regions 𝑖 forming a partition 

of a geographical area of interest A.  

In this context, information on risk factors and the population at risk may also be available, 

possibly at different spatial scales. We shall denote these by 𝑑(𝑥) and 𝑚(𝑥), respectively, 

when available on a spatially continuous scale, and by 𝑑𝑖 and 𝑚𝑖 when they are spatially 

aggregated. 

Existing methods from small area estimation (SAE) only allow spatial prediction at the 

aggregated level of the regions 𝑖 and are usually based on a Gaussian Markov random field 

(GMRF) structure.  

Typically, nonzero elements of the precision matrix of a GMRF are restricted to contiguous 

pairs of the 𝑖.  

Hence, the formulation and interpretation of a GMRF are tied to the specific partition of A, 

which will usually have been drawn up for administrative, historical, or other reasons 

unrelated to the disease aetiology.  

The use of such models also becomes impractical when the spatial units 𝑖 change over time. 

Wall1 points out that the use of GMRFs is especially problematic when dealing with irregular 

geometries, which can induce counter-intuitive forms for the correlation structure between 

variables associated with the 𝑖. 

The geostatistical paradigm, unlike SAE, treats disease risk as a spatially continuous 

phenomenon irrespective of the data format.  

Diggle et al2 argue that the analysis of spatially aggregated counts can be regarded as a special 

case of the class of geostatistical problems and propose to model the 𝑦𝑖 as an aggregated 

realisation of a log-Gaussian Cox process (LGCP).  

Unlike GMRFs, LGCPs allow for prediction of disease risk at any spatial scale, while avoiding 

the ecological fallacy.  However, fitting of LGCP models using the aggregated counts 𝑦𝑖 is 
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computationally demanding due to the iterative imputation of the unobserved locations for 

each reported case within a region 𝑖.  

In this paper, our objective is to develop a computationally efficient approximation to LGCPs 

in order to predict disease risk at any desired spatial scale.  

We argue that this provides a more realistic alternative to GMRF models when LGCPs are not 

computationally feasible and can also be used as an exploratory tool in order to inform more 

complex modelling approaches based on LGCPs.  

The method has been implemented in the open-source R package SDALGCP3, available from 

the Comprehensive R Network Archive. 
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Methods: 
We developed a spatially discrete approximation to LGCP models in order to carry out spatial 

prediction of disease risk at any desired spatial scale using spatially aggregated disease count 

data. 

The details of the methodology can be found in our paper published in Statistics in Medicine, 

titled “A spatially discrete approximation to log-Gaussian Cox processes for modelling 

aggregated disease count data”. The link to the paper can be found in 

(https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8339) (Johnson et al4). 

3.0  APPLICATION: MAPPING OF PRIMARY BILIARY CIRRHOSIS RISK 

In order to test our proposed method, we analyse incidence data on PBC in Newcastle upon 

Tyne, UK, the data set is freely available from the lgcp R package.  

The data consist of geo-referenced cases of definite or probable PBC between 1987 and 1994. 

The objective of this analysis is to quantify the difference in the predictive inferences between 

the gold-standard LGCP model and the proposed SDA, on PBC incidence at LSOA level and the 

spatially continuous relative risk surface.  

In the case of SDA, we fit the population weighted (SDA I) and simple average (SDA II) versions 

described in the previous section. We also consider the exponential variogram (EV) model 

proposed by Wall 3 consisting of a geostatistical Poisson model for the counts whose spatial 

structure is defined using the centroids of each LSOA.  

Finally, we fit the Besag, York, and Mollié (BYM) model. In all five models, we use the index of 

multiple deprivation (IMD) as a covariate of the linear predictor.   

The regression coefficients for the IMD are denoted by 𝛽𝑖 in the LGCP model and by 𝛽𝑖  in the 

BYM, EV, and SDA models, with i = 0 corresponding to the intercept and i = 1 the effect of 

IMD.Table 1 shows the estimates of the parameters of the model while Figure 1 shows the 

map of the estimated continuous relative risk surface exp{S(x)} over a 300 × 300 m regular 

grid covering the whole of the study area. 

 

https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8339
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8339
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Conclusion/Discussion: 
In this project, we have developed an SDA to LGCP models in order to carry out spatial 

prediction of disease risk at any desired spatial scale using spatially aggregated disease count 

data.  

As variation in disease risk occurs in a spatial continuum irrespective of the format in which 

the data are available, we consider the LGCP framework to be a natural statistical paradigm 

for modelling aggregated disease count data.  

However, when computational constraints make the fitting of an LGCP infeasible, we argue 

that SDA provides a computationally efficient solution while respecting the spatially 

continuous nature of disease risk.  

SDA also overcomes some of the limitations inherent to other spatially discrete models, such 

as CAR models. In addition to providing spatially continuous predictions, SDAs can also deal 

with the issue of changing administrative boundaries over time and allow incorporation of 

covariates available at any spatial scale. 

We conclude that SDA is a reliable approximation to LGCP for carrying out predictions at area 

level, both in terms of point predictions and in the quantification of uncertainty. It also 

provides spatially continuous predictions in disease risk that are comparable to those from 

LGCP, but with larger standard errors and more conservative predictions intervals. 
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TABLE 1 Point estimates and 95% confidence/credible intervals (CIs) for the model parameters of the 

spatially to log-Gaussian Cox process (LGCP) using a population-weighted log-intensity average (SDA 



 

  
 30th March 2020 

 Olatunji Johnson, Peter Diggle, Emanuele Giorgi 

  
 

Iple average (SDA II), the exponential variogram (EV) model 
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FIGURE 1 Maps of the predicted relative risk surface exp{S(x)} from the fitted spatially discrete 

approximation (SDA) to log-Gaussian Cox process (LGCP) using a population-weighted log-intensity 

average (SDA I, upper panel) and a simple average (SDA II, middle panel), and the exact LGCP model 

(lower panel) 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 


